اچو ته اليڪٽرانڪس دُنيا جي ٽئين چيف ڪمپونينٽ (ڪوائل يا انڊڪٽر) تي ڪم ڪريون ۽ سمجهون انڊڪٽر يا ڪوائل کي ري ايڪٽر به چئبو آهي۔ هي بُنيادي طرح( پيسوِ 2 الرڪٽروڊ) ڪمپونينٽ هوندو آهي۔ جنهن جو ڪم پاڻ مان پاس ٿيندڙ اليڪٽرڪ يا اليڪٽرانڪ وهڪري (ڪرنٽ) جي تبديلي يا (چينجز) کي رڪاوٽ (رازسٽس) ڪرڻ آهي۔ هي جنهن ڪنڊڪٽر تي مشتمل هوندو آهي اها محض هڪ تار هوندي آهي جنهن کي گولائي ۾ ويڙهبو آهي جيڪو ڪوائل بڻجي ويندو آهي۔ ڪرنٽ جي وهڻ سان اُن ڪوائل جي چوڌاري هڪ انرجي پئدا ٿيندي آهي جنهن کي مئگنيٽ (مقناطيسي) فيلڊ چئبو آهي ۔ جڏنهن ان انڊڪٽر مان ڪرنٽ چينجز ، سان ٽائيم ويرينگ (وقت تبديل ٿيندڙ) مئگنيڪٽڪ فيلڊ ان ڪنڊڪٽر ۾ وولٽيج کي پئدا ڪندي آهي ۽Faraday’s law of electromagnetic induction, موجب اهان ان ڪرنٽ وهڻ جي مخالفت ڪندي آهي جيڪو ان ۾ پئدا ٿيندو آهي۔
انڊڪٽر يا ڪوالس جا مختلف قسم ايئر ڪور ، ريڊيو فريڪُئنسي ، فيرو م۔گنيٽڪ ڪور ، ليمينيٽيڊ ڪور ، فيرائيٽ ڪور ، ٽوروائڊل ڪور ، چوڪ ، ويري ايبل۔ An inductor is characterized by its inductance, the ratio of the voltage to the rate of change of current, which has units ofhenries (H). Many inductors have a magnetic core made of iron or ferrite inside the coil, which serves to increase the magnetic field and thus the inductance. Along with capacitors and resistors, inductors are one of the three passive linearcircuit elements that make up electric circuits. Inductors are widely used in alternating current (AC) electronic equipment, particularly in radio equipment. They are used to block the flow of AC current while allowing DC to pass; inductors designed for this purpose are called chokes. They are also used in electronic filters to separate signals of different frequencies, and in combination with capacitors to make tuned circuits, used to tune radio and TV receivers.
انڊڪٽرز کي ريزسٽر ڪلر ڪوڊنگ وانگر به پڙهبو اهي۔ This will be a simple guide to reading inductor color codes The color codes for inductors are identical to that of a resistor so if you are familiar with resistors this should be very easy the tricky part is remembering the results from this will be in microHenrys, not just Henrys First break down the bands. The last band is the tolerance, and the band right before that is the multiplier. The other bands are the numbers so the easiest way will be to show an example. Say we have the colors BROWN, ORANGE, BROWN, BLACK They would mean the inductor has a value of: BROWN - ORANGE - BROWN - BLACK 1 3 X10 +/-20% So we have 13 x 10 +/-20%, meaning out inductance is 130 micro Henrys with a 20 percent tolerance, or in other words, our actual inductance can be anywhere between 104 and 156 micro Henrys.
انڊۡڪٽس ڪڍڻ لاِفارمولا Inductance formulae[edit] The table below lists some common simplified formulas for calculating the approximate inductance of several inductor constructions. ConstructionFormulaNotes Cylindrical air-core coil[6] L = inductance in henries (H) μ0 = permeability of free space = 4 × 10−7 H/m K = Nagaoka coefficient[6] N = number of turns A = area of cross-section of the coil in square metres (m2) l = length of coil in metres (m) Straight wire conductor[7] L = inductance l = cylinder length c = cylinder radius μ0 = permeability of free space = 4 × 10−7 H/m μ = conductor permeability p = resistivity ω = phase rate Exact if ω = 0 or ω = ∞ L = inductance (nH)[8][9] l = length of conductor (mm) d = diameter of conductor (mm) f = frequency Cu or Al (i.e., relative permeability is one) l > 100 d[10] d2 f > 1 mm2 MHz L = inductance (nH)[9][11] l = length of conductor (mm) d = diameter of conductor (mm) f = frequency Cu or Al (i.e., relative permeability is one) l > 100 d[10] d2 f < 1 mm2 MHz Short air-core cylindrical coil[12] L = inductance (µH) r = outer radius of coil (in) l = length of coil (in) N = number of turns Multilayer air-core coil[citation needed] L = inductance (µH) r = mean radius of coil (in) l = physical length of coil winding (in) N = number of turns d = depth of coil (outer radius minus inner radius) (in) Flat spiral air-core coil[13][citation needed] L = inductance (µH) r = mean radius of coil (cm) N = number of turns d = depth of coil (outer radius minus inner radius) (cm) L = inductance (µH) r = mean radius of coil (in) N = number of turns d = depth of coil (outer radius minus inner radius) (in) accurate to within 5 percent for d> 0.2 r.[14] Toroidal core (circular cross-section)[15] L = inductance (µH) d = diameter of coil winding (in) N = number of turns D = 2 * radius of revolution (in) L = inductance (µH) d = diameter of coil winding (in) N = number of turns D = 2 * radius of revolution (in) approximation when d < 0.1 D Toroidal core (rectangular cross-section)[14] L = inductance (µH) d1 = inside diameter of toroid (in) d2 = outside diameter of toroid (in) N = number of turns h = height of toroid (in)